Signal Flow Graph Part-1 By ECE Tech Notes

1. Find the Transfer Function(TF) of a signal flow graph(SFG) given below.

From the SFG we have,

1. Total forward paths = 1.
P1 = G1G2G3

2. No. of F/b loops = 3.
L= -G1G2H1, L-G2H2, L-G2G3H3

3. There are no two non touching loops.

4. Since all the loops are touching to the forward path  P1. So, Δ1 = 1.

Now, Δ = 1 - [ L+ L2 + L] = 1 - [ -G1G2H-G2H-G2G3H3 

Δ = 1+ G1G2H+ G2HG2G3H3

The TF of a SFG is given by mason gain formula,

TF = C(s) / R(s) P1Δ1/Δ

Substituting the values of P1, Δ& Δ we get,



2. Find the Transfer Function(TF) of a signal flow graph(SFG) given below.

From the SFG we have,

1. Total forward paths = 1
P1 = G1G2G3G4 

2. No. of F/b loops = 3
L1= -G3G4H1, L2 = -G2G3H2, L3 = -G1G2G3G4H3, 

3. There are no two non touching loops.

4. Since all the loops are touching to the forward path  P1. So, Δ1 = 1.

Now, Δ = 1 - [ L1 + L2 + L] = 1 - [ -G3G4H-G2G3H-G1G2G3G4H3 ]

Δ =  1+ G3G4H1G2G3HG1G2G3G4H

The TF of a SFG is given by mason gain formula,

TF = C(s) / R(s)P1Δ1/Δ

Substituting the values of P1, Δ& Δ we get,



3. Find the Transfer Function(TF) of a signal flow graph(SFG) given below.


From the SFG we have,

1. Total forward paths = 2
P1 = G1G2G3PG4G3

2. No. of F/b loops = 3
L-G2H2, L= -G1G2G3HL= -G4G3H1

3. Product of all two non touching loops are L1LG2G3G4H1H2

4. Since all the loops are touching to the forward path P1. So, Δ1 = 1.

For the P2, L1 is the non touching loop. So,
Δ= 1 - [ L1 ]1 - [ -G2H2 ] = 1 + G2H2.

Now, Δ = 1 - L+ L+  L] +L1L3 ] 

Δ = 1 + G2HG1G2G3HG4G3HG2G3G4H1H2

The TF of a SFG is given by mason gain formula,

TF = C(s) / R(s) = (P1Δ1 + P2Δ2)/Δ

Substituting the values of P1, Δ1, P2, Δ& Δ we get,


4. Find the Transfer Function(TF) of a signal flow graph(SFG) given below.

From the SFG we have,

1. Total forward paths = 2.
P1 = G1G2G3PG1G4

2. No. of F/b loops = 5.
LG1G2H1L= -G1G2G3L= -G1G4, L=G4H2, L=G2G3H2

3. There are no two non touching loops.

4. Since all the forward paths are touching to all the loops. So,  Δ= Δ2 =1.

Now, Δ = 1 - L+ L+ L+ L+ L5 ] = 1 -  [G1G2HG1G2GG1G4 + G4H2 + G2G3H2]

Δ = 1 - G1G2H1 + G1G2GG1GG4HG2G3H2

The TF of a SFG is given by mason gain formula,

TF = C(s) / R(s) = (P1Δ+ P2Δ2)/Δ

Substituting the values of P1, Δ1, P2, Δ& Δ we get,


Post a Comment

0 Comments